首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26698篇
  免费   713篇
  国内免费   1540篇
测绘学   1568篇
大气科学   2470篇
地球物理   5061篇
地质学   12727篇
海洋学   1414篇
天文学   1714篇
综合类   2413篇
自然地理   1584篇
  2024年   4篇
  2023年   46篇
  2022年   133篇
  2021年   181篇
  2020年   160篇
  2019年   154篇
  2018年   4884篇
  2017年   4155篇
  2016年   2719篇
  2015年   368篇
  2014年   262篇
  2013年   172篇
  2012年   1103篇
  2011年   2871篇
  2010年   2146篇
  2009年   2469篇
  2008年   2025篇
  2007年   2462篇
  2006年   144篇
  2005年   271篇
  2004年   469篇
  2003年   492篇
  2002年   321篇
  2001年   126篇
  2000年   137篇
  1999年   100篇
  1998年   101篇
  1997年   69篇
  1996年   55篇
  1995年   55篇
  1994年   45篇
  1993年   43篇
  1992年   39篇
  1991年   30篇
  1990年   17篇
  1989年   18篇
  1988年   15篇
  1987年   6篇
  1986年   7篇
  1985年   5篇
  1984年   2篇
  1983年   3篇
  1982年   7篇
  1981年   22篇
  1980年   21篇
  1976年   7篇
  1962年   1篇
  1958年   5篇
  1957年   1篇
  1954年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
马丽  田华征  康蕾  戚伟 《地理科学》2020,40(6):863-873
在解析支撑能力和东北问题特点的基础上,从“创新、协调、绿色、开放、共享”五大理念出发建立全面振兴社会经济支撑能力评价指标体系和综合评价方法,以地级市为单元对东北三省进行评估。研究发现:各地市社会经济支撑能力差异显著,哈大沿线核心城市的支撑能力较强,西翼城市以及朝阳、七台河、绥化、葫芦岛、铁岭、双鸭山和鹤岗等资源型城市支撑能力较弱。因此未来东北地区在振兴政策的区域分布上应有所侧重,对不同地区施以不同的振兴或扶持政策。在创新、绿色、开放方面需要集中力量重点突破,而在体制机制改革和共享服务建设方面需要全面覆盖,并重点加强黑龙江北部和辽宁、吉林西翼城市的共享能力建设。  相似文献   
2.
环渤海地区海洋经济增长质量空间溢出效应研究   总被引:4,自引:2,他引:2  
李博  田闯  金翠  史钊源 《地理科学》2020,40(8):1266-1275
海洋经济向质量效益型转变是建设海洋强国的新要求。通过构建海洋经济?地理距离空间权重矩阵对2000—2014年环渤海地区17个沿海地级市海洋经济增长质量主体的空间交互作用及空间效应进行研究;借助空间计量模型对海洋经济增长质量空间效应影响因素进行甄别。研究表明:① 环渤海地区海洋经济增长质量主体呈显著空间相关性,存在空间交互作用;② 海洋经济增长质量存在空间溢出的正反馈效应。影响因素中对环渤海地区海洋经济增长质量的直接贡献强度排序为:海洋环境>海洋产业>海洋人才>海洋资本>海洋科技,对其他地区溢出效应影响的排序为:海洋基建>海洋人才>海洋资本。研究为环渤海地区海洋政策制定提供一定参考依据。  相似文献   
3.
南极因其独特的自然环境成为潜在、重要的微生物资源库,是产生新型生物活性物质和先导化合物菌株的潜在种源地,南极微生物正在成为创新药物研究新的重要资源。虽然近年来对南极微生物次级代谢产物的研究逐渐增加,但与温带和热带微生物研究相比仍处于初级阶段。对从南极普里兹湾海洋沉积物中获得的两株枝孢霉属真菌Cladosporium sp. NJF4和NJF6进行次级代谢产物分离及结构鉴定,获得20个化合物。化合物结构类型包括甾醇(1)、倍半萜类(7—8)、生物碱类(9—14)、二酮哌嗪(2—5、15—17)、芳香酸(6、18—19)等,其中倍半萜类(7—8)为首次从枝孢霉属真菌中分离得到,以上研究将为丰富南极微生物次级代谢产物库奠定一定的研究基础。  相似文献   
4.
The effects of irregularity in elevation of cross-laminated timber buildings have not been fully analysed in literature to provide useful information for the design. In this work, a number of building configurations, regular or irregular in elevation, characterized by a different arrangement per storey of the floor–wall joints have been analysed by means of non-linear dynamic analyses. Comparative results in terms of ratio between the behaviour q-factor of the investigated irregular configurations and that of reference regular ones, show that less dissipative capacity can be expected if the building is irregular due to a disequilibrium among storeys between the actual and the required strength provided by the floor–wall joints. A correlation method to estimate the behaviour q-factor for perfectly regular cross-laminated timber buildings is here presented and extended to in-elevation irregular ones. A new empirical formulation to assess the reliable corrective factor accounting for the irregularity in elevation of cross-laminated timber buildings, according to Eurocode 8 provisions, is also proposed. A final discussion about the implications of in-elevation irregularity on the building design is reported.  相似文献   
5.
Self-centering rocking walls offer the possibility of minimizing repair costs and downtimes, and also nullify the residual drift after seismic events, thanks to their self-centering properties. In this paper, the effect of axial stress ratio on the behavior of monolithic self-centering rocking walls is investigated by utilizing a developed finite element model. To verify the validity of the finite element model, results and observed damage in the model are compared with those of a full-scale wall test. The axial stress ratio is varied from 0.024 to 0.30 while keeping the other structural parameters constant. For qualitative damage evaluation, the observed damage in the model compared with expected damage states of desired performance levels. In order to evaluate the incurred damage quantitatively, the amount of crushing and damage in the wall is calculated by utilizing several ratios (crushing ratio and damage ratio). Furthermore, seismic response factors (i.e., μ, R and Cd) are calculated for different axial stress ratio values. The obtained results showed that, in order to satisfy the requirements of desired performance levels, the maximum axial stress ratio should be approximately within the range of 0.10–0.15. In addition, the maximum overall damage ratio and crushing ratio are suggested to be less than 5%. For axial stress ratio higher than 0.15, the flag-shaped pattern of hysteresis curves completely disappeared and the variation of displacement ductility is less sensitive to axial stress ratio. Considering the maximum axial stress ratio limited to 0.150, values of 4 and 3.5 are conservatively proposed as a period-independent response modification factor and displacement modification factor of the investigated structural wall, respectively.  相似文献   
6.
7.
The accurate evaluation and appropriate treatment of uncertainties is of primary importance in modern probabilistic seismic hazard assessment (PSHA). One of the objectives of the SIGMA project was to establish a framework to improve knowledge and data on two target regions characterized by low-to-moderate seismic activity. In this paper, for South-Eastern France, we present the final PSHA performed within the SIGMA project. A new earthquake catalogue for France covering instrumental and historical periods was used for the calculation of the magnitude-frequency distributions. The hazard model incorporates area sources, smoothed seismicity and a 3D faults model. A set of recently developed ground motion prediction equations (GMPEs) from global and regional data, evaluated as adequately representing the ground motion characteristics in the region, was used to calculate the hazard. The magnitude-frequency distributions, maximum magnitude, faults slip rate and style-of-faulting are considered as additional source of epistemic uncertainties. The hazard results for generic rock condition (Vs30 = 800 m/s) are displayed for 20 sites in terms of uniform hazard spectra at two return periods (475 years and 10,000 years). The contributions of the epistemic uncertainties in the ground motion characterizations and in the seismic source characterization to the total hazard uncertainties are analyzed. Finally, we compare the results with existing models developed at national scale in the framework of the first generation of models supporting the Eurocode 8 enforcement, (MEDD 2002 and AFPS06) and at the European scale (within the SHARE project), highlighting significant discrepancies at short return periods.  相似文献   
8.
The awareness and preservation of the vernacular heritage and traditional construction techniques and materials is crucial as a key element of cultural identity. However, vernacular architecture located in earthquake prone areas can show a particularly poor seismic performance because of inadequate construction practices resulting from economic restraints and lack of resources. The horizontal diaphragms are one of the key aspects influencing the seismic behavior of buildings because of their major role transmitting the seismic actions to the vertical resisting elements of the structure. This paper presents a numerical parametric study adopted to understand the seismic behavior and resisting mechanisms of vernacular buildings according to the type of horizontal diaphragm considered. Detailed finite element modeling and nonlinear static (pushover) analyses were used to perform the thorough parametric study aimed at the evaluation and quantification of the influence of the type of diaphragm in the seismic behavior of vernacular buildings. The reference models used for this study simulate representative rammed earth and stone masonry vernacular buildings commonly found in the South of Portugal. Therefore, this paper also contributes for a better insight of the structural behavior of vernacular earthen and stone masonry typologies under seismic loading.  相似文献   
9.
In this study, the efficiency of conventional shotcrete technique for strengthening of Un-Reinforced Masonry (URM) walls was shown using an experimental program. In addition, in this program the possible benefit of using anchors for connecting the shotcrete reinforcement layer to the R/C foundation was studied. The experimental program consisted of testing five full scale specimens with two different height-to-length aspect ratios and so different failure modes, under in-plane cyclic loading conditions. Two specimens were tested as reference and others were strengthened on a single-face using shotcrete layer. According to the results, strengthening of URM walls using traditional shotcrete approach created a completely stiff panel and prevented the formation of cracks. The failure mode in both reference and strengthened short length walls was rocking and the shotcrete layer could increase the strength capacity, energy dissipation, and stiffness of wall due to yielding and rupture of steel bars anchored to the foundation. On the other hand, in strengthened long length walls, shotcrete layer increased the shear sliding capacity with no or small increasing in their rocking capacity. Therefore, the failure mode of strengthened walls converted from shear sliding to rocking, even in the specimen with anchorage system. The distributed type of anchorage system could not improve the strength capacity of long length wall. Anchorage system was able to improve the out-of-plane performance of strengthened walls.  相似文献   
10.
The development of fragility curves to perform seismic scenario-based risk assessment requires a fully probabilistic procedure in order to account for uncertainties at each step of the computation. This is especially true when developing fragility curves conditional on an Intensity Measure that is directly available from a ground-motion prediction equation. In this study, we propose a new derivation method that uses realistic spectra instead of design spectral shapes or uniform hazard spectra and allows one to easily account for the features of the site-specific hazard that influences the fragility, without using non-linear dynamic analysis. The proposed method has been applied to typical school building types in the city of Basel (Switzerland) and the results have been compared to the standard practice in Europe. The results confirm that fragility curves are scenario dependent and are particularly sensitive to the magnitude of the earthquake scenario. The same background theory used for the derivation of the fragility curves has allowed an innovative method to be proposed for the conversion of fragility curves to a common IM (i.e. spectral acceleration or PGA). This conversion is the only way direct comparisons of fragility curves can be made and is useful when inter-period correlation cannot be used in scenario loss assessment. Moreover, such conversion is necessary to compare and verify newly developed curves against those from previous studies. Conversion to macroseismic intensity is also relevant for the comparison between mechanical-based and empirical fragility curves, in order to detect possible biases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号